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Motivation

Current Challenges

There are some challenges and regulations of IK and Al.

I Inverse Kinematic

* Problem
Traditional closed-form or numerical solvers handle moderate
degrees of freedom, but their runtime grows with redundant joints,
and they often require manual damping or iterative back-tracking to
respect joint limits.

* [ssue
There are some IK Deep Learning models that can deal with the

problems, but the models are lack with transparency.

I A

* Need
Now the Deep Learning models need to be more trust-worthy, and it
can be application in robotics.

* Regulations

Now there are many regulations of using Al, e.g. EU Al Act

Current Challenges

Problem

Traditional IK solvers VoS :
are slow for real- A ‘ (.

time applications

X2 py2- i 2y
RS 2 A Issue
8, = atan2,y,x N \.) Deep learning IK models
‘ < lack transparency
€&y s) (black box)

J e ’

Q Regulation
— EU Al Act and respnsible

- . Al requirements

Fig 1. Current Challenges



Motivation

Research Gap

Find out what is the main purpose in the research.

I Comparison

RESEARCH GAP IN
INVERSE KINEMATICS

Approach | Speed | Accuracy | Explainability | Obstacle Aware
Original IK | Slow Good Transparent Limited
Neural IK Fast Good Black Box Unknown
I Gap
*3No

No Explainability in neural inverse kinematic.

No Connection between Al decisions and physical safety.

No Tools to understand obstacle avoidance behavior.

I Solution

Combine neural IK with explainable Al (XAl) to understand and

improve robot decision-making

5@
| Ngd

Current State of IK Solutions
Traditional IK Neural IK BLACKBOX

(©
O
0’ Q Slow v x
W\
= Good v v

Transparent | Transparent | Limited

RESEARCH GAP
« Neural networks are fast and accurate
but we don't know WHY they make dec-
isions

T
Neural IK

« In robotics, we need to understand HOW
the robot avoids obstacles

« Satety-critical applications require
transparent decision-making

OUR SOLUTION:

i @, —

Combine neural IK with
explainable Al (XAl) to understand and
improve robot decision-making

Fig 2. Research Gap



Research Questions

Questions need to be solved through the research.

Research Question 01

How do different IKNet architectures approach obstacle
avoidance? Primary Research Questions (Solved)

e How do different IKNet architectures Q
approach obstacle avoidance?

Research Question 02 ‘

Which features are most important for each model's g Which features are most important Q
decision-making? for each model’s decision-making?

Lanll

Q How does explainability relate to 0
obstacle avoidance performance?

Research Question 03

How does explainability relate to obstacle avoidance
performance?

Explainable Neural Inverse Kinematics for Obstacle-Aware | 4




Contributions

Showing why this research is important to the field.

XAl-driven Analysis Framework for Neural IK

Comprehensive explainability with XAl tool and link feature
attribution to physical robot behavior

Explainability-Safety Correlation

Connecting Al explanations to obstacle avoidance
performance and demonstrates how balanced feature
attribution leads to better safety

Comprehensive Comparative Analysis

Systematic evaluation of three IKNet variants, multi-scenario
obstacle avoidance assessment and integrate XAl insights
with physical safety metrics

Main Contributions

» XAl-driven « Explainability < « Comparative
IK Analysis Safety Correlation  Study of IKNet
Variants

§ Speed

InterpretM g
E Safety Sacfity
8
2
[s]
:%—’ Explainability Variant B

XAl Score — Original ~ Variant A
o Expiiainability o Explaninability o Comparative Study
IK Analysis ©« Safety Correlation of IKNet Variants

Explainable Neural Inverse Kinematics for Obstacle-Aware | 5



Related Work

Learning-based Inverse Kinematics

Get ideas to do the inverse kinematics.

I Traditional IK

* Jacobian pseudo-inverse

It solves f . L b i TRADITIONAL VS NEURAL
t solves tfor minimum-norm joint increments but oscillates near INVERSE KINEMATICS
singularities unless damped. et

* CCD
The method converges quickly for serial chains yet produces zig-zag
trajectories when the target is distant.

* DLS

It trades accuracy for robustness by injecting a Tikhonov regulariser.

I Neural IK

LIMITED

2
EXPLAINABILITY UNKNOWN

* IKNet and DeeplK
Two of them paved the way for data-driven IK, obtaining MSE < on
the KUKA LBR dataset (75 k samples) with five x 400-unit layers.

® TRADITIONAL
NEURAL

Fig 3. Inverse Kinematics




Related Work

Explainable Al (XAl)

Get tools to start with XAl.

I Model Analysis XAl

* SHAP
SHAP offers local accuracy and consistency, requiring evaluations in
the worst case but approximate SHAP scales linearly with samples.

* LIME
LIME perturbs inputs to fit local ridge models and applicability to

high-dimensional quaternion spaces is limited.

I Comprehensive XAl

* InterpretML
It allow interactive attribution dashboards with over 5 ms overhead
via WebSocket' s and provide both glassbox and blackbox models

analysis.

Output=0.4

Age =65 —|

Sex=F —
BP =180 —
BMI =40 —

Prediction probabilities

edible

poisonous |:| 1.00

Output=0.4
1
— Age =65
— Sex=F
— BP=180
— BMI=40
edible Feature Value

odor=foul
026

gill-size=bros2

2: Predicted (0.994) | Actual (1.0)

Fig 4. XAl Tools



Methodology

Full Structure

The whole structure of the research.

I IKNet Models

Use three original and improved IKnet models to train and using it for
inverse kinematics also do the comparison.

| XAl Analysis

Use two XAl tools, SHAP and InterpretML, to analysis the three models
Also, combined the results and show by feature importance.

I Obstacle Avoidance

Create a visualization of obstacles and using the results of XAl analysis

to see how the model done the decisions to avoid the obstacles.

o | N

Input Data

Kinermatics Prooes &
Joint Stats

XAl Analysis

SHAP Value
Compulation

Eeatusre Impertance
Extracticn
Iiiterpret ML
/ Analysls 4 \

IKMet Model Architectures Comparative Evaluation Research Insights

- Model Capatillity
1 ed used I — e —
Drigina Iengeany Fae Mods Sy an .
KMt 1KHet KMt Comparison | Tables | Visuslization E;::,:,F‘,,,, nee
- Obstacle Avoidance
‘-\\- Efficacy

oObstacle Avoidance /
Farward - Callision _, Performance
Kinematics Detection

Metrics

Fig 5. Full Structure of Research



IKNet Models

The structure of each models.

I Original IKNet

* Input(7-Dimension)

* Hidden Layers (neurons)
400 -> 300 -> 200 -> 100 -> 50 (ReLV)
Dropout(0.1)

* Output(4-Dimension)

* Sequential feature processing

I Improved IKNet

* Input(7-Dimension)

* Hidden Layers (neurons)
128 -> 64 (ReLU) with BatchNormalization -> ResidualBlock
Dropout(0.1)

* Output(4-Dimension)

* Enhanced feature propagation

8@
N JC S ]
s s

Methodology

Feature

Original IKNet

Improved IKNet

Focused IKNet

Architecture

Input Processing

Hidden
Dimensions

Activation
Function

Regularization

Weight
Initialization

Key Features

Design Philosophy

Sequentially fully
connected layers with
decreasing dimensions.

Unified processing of
position and orientation

[400, 300, 200, 100, 50]
RelLU

Dropout (p=0.1)

Default PyTorch
Simple, direct mapping

Gradually decreasing
dimensionality

Residual blocks with
batch normalization

Unified processing with
enhanced feature
propagation

[128, 64]

RelLU

Dropout (p=0.1) + Batch
Normalization

Kaiming
Residual connections,

gradient flow
enhancement

Enhanced feature
propagation

Separate branches for
position and orientation

Specialized processing
paths for position and
orientation

64 for each branch, 128
combined

RelLU
Dropout (p=0.05)

Kaiming

Explicit separation of
position and orientation
components

Specialized feature
exfraction

Fig 6. Compare Table of three models



IKNet Models

The structure of each models.

I Focused IKNet

* Input(7-Dimension)

* Hidden Layers (neurons)
64 -> 128 (ReLU + Dropout) (3-Dimension)
64 -> 128 (ReLU + Dropout) (4-Dimension)
128 -> 64 -> 4 (ReLU + Dropout)

* Output(4-Dimension)

* Explicit separation of concerns

I Loss Function

* Input: 7D pose vector (x,y,z + quaternion)
* Output: 4D joint angles

* Optimizer: Adam (Ir=1e-3)

* Loss: Position + Orientation + Joint limits

& @
R e

Methodology

2
L= wpos ’ Epas + Worient Eorient + Wiimit -~ Z?:l max(O, |6i,max|)

Fig 7. Loss Function Formula

| 10



Methodology

XAl Analysis

The structure of SHAP Analysis.

I SHAP Implementation

* Input: 7D Pose Vector [x, y, z, qX, qy, qz, qw]
* IKNet Model Prediction

Original IKNet

Improved IKNet

Focused IKNet
* SHAP Value Computation

* Feature Importance for each joint [jointl, joint2, joint3, joint4]
I Key SHAP Properties

* Efficiency: All feature contributions sum to prediction
* Symmetry: Equal features get equal attribution
* Dummy: Irrelevant features get zero attribution

* Additivity: Consistent across different models

& @
R e

Algorithm 1 SHAP Analysis for IKNet Models

Data: model, background_data, test_data, feature_names
Result: SHAP values and expected values
Create CPU copy of model for analysis
Define prediction function for model outputs
Initialize KernelExplainer with prediction function
Compute SHAP values for test data
return SHAP values, expected values

Fig 8. SHAP Algorithm
111



Methodology

XAl Analysis

The structure of InterpretML Analysis.

I SHAP Implementation

* Step 01: Custom Feature Importance
Permutation-based analysis
Generate importance distributions per joint
* Step 02: Partial Dependence Analysis
Replace feature values with grid points
Calculate average predictions and plot relationships
* Step 03: Feature Interaction Analysis
Measure joint effects beyond individual contributions

Generate interaction strength matrices

I Formulas

* Importance Score

I; = E[| f(X) — f(X")]] (7)
* Partial Dependence

PDy(2:) = Eag[f(#i, 70)] (8)

Algorithm 5 InterpretML Analysis

Require: model, dataset, feature_names, joint_names, output_dir
Ensure: Dictionary of interpretability results
1: Sample data for analysis (up to 200 samples)
2: Create predict function for model
3: // Custom Feature Importance Analysis
4: for each joint in joint_names do
5. for each feature in feature_names do
6 Create perturbed dataset with shuffled feature values
7 Calculate importance as mean absolute prediction difference
8 Visualize feature importance
9: end for
10: end for
11: // Manual Partial Dependence Analysis
12: for each joint in joint_names do
13:  for each feature in feature_names do

14: Create grid spanning feature range

15: for each grid point do

16: Replace feature values and calculate average prediction
17: Store in partial dependence values

18: end for

19: Generate partial dependence plot

20:  end for

21: end for

22: // Feature Interaction Analysis

23: for each joint in joint_names do

24:  Identify top features by importance
25:  for each pair of top features do

26: Create 2D grid for feature combinations
27: Calculate and visualize interaction effects
28: end for

29: end for

30: Create consolidated visualization of all analyses
31: return interpretability results =0

Fig 9. InterpretML Algorithm
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XAl Analysis

Visualization steps and key points.

I Visualization Components

* SHAP Bar Charts

Direct feature importance comparison
* Heat Maps

Feature sensitivity across input space
* Partial Dependence Plots

How features affect outputs
* Feature Interaction Maps

2D relationship visualization

I Output

* Feature importance rankings per model per joint

* Sensitivity patterns across feature space
* Non-linear relationship identification

* Model comparison insights

5@
| Ngd

Methodology

Raw Data Model Training XAl Analysis Visualization Interpretation
*
2L == [| :
— - - |0 = I] 4 *
= — N
Pose-Joint 3 IKNet + InterpretML Heat Maps Feature Rankings
Pairs Variants Computations +PD Plots + Insights
(75k samples) Models + Bar Charts + Patterns

Fig 10. Visualization Steps
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Methodology

Obstacle Avoidance

The whole structure of obstacle avoidance.

I Forward Kinematics Implementation

;

chm,i = 23'21 Gj
S i = xi—1 + 1; cos(Ocum.i) (10)
Lyz =Yi—1 + lz Sin(ecum,i)

(chm,i = Z;:l ej

x; = xi—1 + 1; cos(Ocum.i)
Yi = Yi—1 + lz Sin(ecum,i)
(Zi = Zi—1 +1;-0.1- %

(11)

I Collision Detection

Vv =Xy —X; (segment vector)

_ (o—x1)v e
t = rojection parameter
e (proj b ) (12)
t’ = max(0, min(1,¢)) (constrained parameter)

p =x; +t'v (closest point)

Algorithm 6 Forward Kinematics

Require: joint_angles, link_lengths, add_z
Ensure: Joint positions
1: positions = add_z ? [(0,0,0)] : [(0,0)]
2: cumulative_angle = 0
3: for i, angle in enumerate(joint_angles) do
4:  cumulative_angle += angle
5. prev_pos = positions[-1]
6: x = prev_pos[0] + link lengths[i] * cos(cumulative_angle)
7.y = prev_pos[l] + link_lengths[i] * sin(cumulative_angle)
8 if add_z then

9: z = prev_pos[2] + link_lengths[i] * 0.1 * (i+1)/len(link_lengths)
10: positions.append((x,y,z))

11:  else

12: positions.append((x.y))

13:  end if

14: end for

15: return positions =0

Algorithm 7 Collision Detection

Require: arm_positions, obstacle_positions, obstacle_radii
Ensure: Collision status, clearance, critical segment

1: min_clearance = infinity

2: collision_detected = false

3: collision_segment = null

4: collision_obstacle = null

5: for obs_idx, (obs_pos, obs_radius) in enumerate(obstacles) do

6:  for segment_idx in range(len(arm_positions) - 1) do

i Calculate line vector and length from segment endpoints

8 if line_len ; 0 then
9: Calculate closest point on segment to obstacle
10: distance = distance between closest point and obstacle center
11: clearance = distance - obs_radius
12: if clearance | min_clearance then
13: min_clearance = clearance
14: collision_segment = segment_idx
15: collision_obstacle = obs_idx
16: end if
17: if distance j= obs_radius then
18: collision_detected = true
19: end if
20: end if
21:  end for
22: end for

23: return collision_detected, min_clearance, collision_segment,
collision_obstacle =0

Fig 11. Avoidance Algorithm
| 14



Evaluation Metrics

Visualization steps and key points.

I Primary Safety Metrics

* Minimum Clearance: Smallest distance to any obstacle
Higher = Safer (Measure in workspace units)

* Target Position Error: Euclidean distance to goal
Lower = More accurate

* Collision Rate: Percentage of failed attempts
0% = Perfect safety record

* Critical Segment Analysis: Which arm part is most vulnerable

|dentifies weak points in obstacle avoidance strategy

I Secondary Performance Metrics

* Path Smoothness: Trajectory continuity
* Energy Efficiency: Path directness
* Computational Time: Inference speed

* Robustness: Performance across scenarios

Methodology

SAFETY & PERFORMACE
METRICS
PRIMARY SECONDARY
SAFETY METRICS PERFORMANCE
METRICS
MINIMUM
CLEARANCE Path
HIGHER = SAFER Smoothness
TARGET
Energy
POSITION S
‘<5ERROR Q Efficiency
LOWER=BETTER
COLLISION @Compgtational
RATE Time
0% IDEAL
& CRITICAL ll Robustness
SEGMENT [ |
ANALYSIS

IDENTIFY
VULNERAUBLE
PART

SECONDARY PERFORMANCE METRICS

Fig 12. Evaluation Metrics
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Methodology

Scenario Generation

Visualize and test in different scenarios.

I Scenario Complexity Levels o
Random Scenario in a Robot Workspace

* Simple

2-3 obstacles, wide spacing Qn *

* Moderate 4

3-4 obstacles, narrow passages Q

* Complex
2n

4-5 obstacles, constrained workspace
O | Origin

I Data Collection O Q 57

5n

* Trajectory Recording: Complete arm configurations

* Performance Logging: All metrics per scenario
* Visualization Generation: 2D and 3D path plots @ oObstacle % Target Position

* Statistical Compilation: Cross-model comparisons

Fig 13. Scenario Generation

@@ 116



Results

SHAP Results

The overview performance of SHAP Analysis.

I Key Patterns Identified

* Original IKNet

Heavy reliance on quaternion components (qz=0.6)
* Improved IKNet

More balanced distribution across all features
* Focused IKNet

Strong emphasis on z-position (0.8) and qy (0.6)

I Significance

* All differences > 0.1 are statistically significant (p < 0.05)
* Cross-validation confirms pattern consistency

* Standard deviations within acceptable ranges

Fig 14. SHAP Heat Map

|17



SHAP Results

Overview on Original IKNet results analysis with SHAP.

I Result Breakdown
* Joint 01

gz shows highest relative importance, minimal position influence
* Joint 02

gw primary influence, secondary gz contribution
* Joint 03

gz shows extremely high relative importance
* Joint 04

gz continues to dominate
I Interpretation and Meaning

* Strategy: Orientation-centric obstacle avoidance

* Strength: Consistent rotational approach

* Weakness: Underutilizes positional information

* Implication: May miss spatial optimization opportunities
* Robot primarily adjusts wrist and elbow rotations

* Limited use of base positioning for obstacle avoidance

Results
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Fig 15. SHAP value of Original IKNet model
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SHAP Results

Overview on Improved IKNet results analysis with SHAP.

I Result Breakdown
* Joint 01

x-coordinate shows increased prominence compared to Original
* Joint 02

More distributed importance across features
* Joint 03

z-position significant, but not exclusive
* Joint 04

Mixed strategy with position and orientation

I Improvement and Meaning

* 30% increase in positional feature utilization

* More even distribution across all input dimensions

* Adaptive strategy using best available information

* Robot uses both positioning and rotation for obstacle avoidance

* Better integration of kinematic chain

Results
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Fig 16. SHAP value of Improved IKNet model
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SHAP Results

Overview on Focused IKNet results analysis with SHAP.

I Result Breakdown
* Joint 01

Moderate qy influence
* Joint 02

Balanced qy and z-position usage
* Joint 03

Strong z-position emphasis
* Joint 04

Continued z-position emphasis

I Improvement and Meaning

* Vertical movement priority: High z-position weights

* Specific rotation axis: qy consistently important

* Targeted approach: Focused on particular movement strategies
* Robot emphasizes vertical positioning for obstacle clearance

* May excel in scenarios matching its specialization

Results

™
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Fig 17. SHAP value of Focused IKNet model
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SHAP Results

Summary on the whole SHAP Results.

I Original IKNet

* High dependency on z-axis rotation: joints 3 and 4
* Quaternion-dominant strategy: gz most, qw secondary
* Limited positional utilization: x, y, z coordinates show minimal impact

* Concentrated feature utilization: Specialized but potentially brittle
I Improved IKNet

* Balanced feature distribution: Significant weights across z, qy, and gz
* Higher positional awareness: x shows increased importance
* More comprehensive strategy: Integrates multiple sources

* Performance correlation: Balanced approach leads to better avoidance

I Focused IKNet

* Specialized pattern: High importance on z (joints 3 and 4)
* Quaternion y emphasis: qy shows highest with z-position
* Targeted movement strategy: Prioritizes specific movement patterns

* Conservative but focused: Highest clearances but higher target errors

& @
R e

Results

Key Discoveries:

Feature Balance vs Performance

Performance Metric (Safety & Accuracy

>

Architecture
Influence

O

Focused

Original I:Il:ll]

Specialization
Trade-off

Feature Balance Index

Fig 18. Key Discoveries of SHAP Results
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InterpretML Analysis

Original IKNet results analysis by InterpretML

Concentrated brightness
High sensitivity only in specific feature combinations

Sharp color transitions

Model responds dramatically to small input changes in
certain regions

Interpretation

Less generalized approach - works well for specific poses but
may struggle with variations
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InterpretML Analysis

Improved IKNet results analysis by InterpretML

Smooth gradients
Gradual sensitivity transitions

Distributed coverage
More uniform across feature space

Interpretation

Better generalization - handles diverse robotic poses more
robustly
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Results

IntrepretML Results

The feature importance analysis by InterpretML.

| Joint 01
* Original IKNet: Minimal feature dependence (max: 0.019)
* Imporved IKNet: Balanced qy influence (0.059) v .

00280 0% 202 e X oo o010 o1z o1
v

* Focused IKNet: x, y, z coordinates show minimal impact

Feature IMEortznce - jolitd

* Insight: Base joint primarily provides stability

| Joint 02 1. i
* Original IKNet: gw dominated (0.148) | 1 e
* Imporved IKNet: qw primary (0.105), but more distributed 1| g
* Focused IKNet: qy (0.083) and z-position (0.062) balanced I o 2
* Insight: Critical joint for orientation establishment J .
y‘l 0.001 y4 0.001

Fig 19. Feature Importance analysis by InterpretML
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Results

IntrepretML Results

The feature importance analysis by InterpretML.

I Joint 03

* Original IKNet: z-position dominant (0.413)
* Improved IKNet: z-position high (0.472) but qy significant (0.242)

3

a 4 3
i 2 g
2 3
21 5

* Focused IKNet : z-position focused (0.410), qy secondary (0.119)

Feature Importance - jointl Feature Importance - joint2

* Insight: Primary obstacle avoidance executor

I Joint 04

((((((

o = x f ER] n 2
e S s S

Impartance Score

0.002 0.004 0.006 0.008 0.010 0.00 0.01 0.02 06
° O o~ I IKN t. 't' 't' | 0435 Feature Importance - joint3 Feature Impartance - joint4
rigina et: z-position critical (0.435)

* Imporved IKNet: z-position moderate (0.363), distributed approach
* Focused IKNet: z-position emphasis (0.435), gy complement (0.114)

* Insight: Fine-tuning for precise positioning

T -
=
g g8 8

Fig 19. Feature Importance analysis by InterpretML
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Obstacle Avoidance

The overall performance analysis of obstacle avoidance.

I Path Length Comparison

* Improved IKNet
Shortest, most direct paths

* Original IKNet
Moderate length, some inefficiencies

* Focused IKNet
Longest paths, conservative routing

I Minimum Clearances

* Improved IKNet
0.5402 units (optimal balance)

* Original IKNet
0.9932 units (moderate safety)

* Focused IKNet
1.5604 units (maximum safety)

5@
| Ngd

Results

2D View: Obstacle Avoidance Comparison

IKNet Models Comparison: Obstacle Avoidance

3D View: Obstacle Avoidance Comparison

IKNet Models Comparison: Multiple Obstacle Avoidance

2D View: Multiple Obstacle Avoidance 3D View: Multiple Obstacle Avoidance

£
B e s o S S
2 Posaion

Fig 20. Multiple Obstacles Avoidance
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The overall performance analysis of obstacle avoidance.

Position Errors

____________________________________________ Y
Results Discussion ‘;f Conclusions E

---------------------------------------------

IKNet Models Comparison: Multiple Obstacle Avoidance

2D View: Multiple Obstacle Avoidance 3D View: Multiple Obstacle Avoidance

-z
X Position

IKNet Models Comparison: Multiple Obstacle Avoidance

2D View: Multiple Obstacle Avoidance 3D View: Multiple Obstacle Avoidance

— Crigina IKNet o mprovediNet  mm focussdiNet O Obsince @ Taet

Fig 20. Multiple Obstacles Avoidance
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Obstacle Avoidance

Obstacle avoidance step-by-step result for scenario 1.

Original IKNet

ORIGINAL — .
&7 Moderate efficiency, some hesitation.

@ Improved IKNet
Direct path, smooth transitions.

¢l Focused IKNet
A » Wide berth, very conservative.

IKNel Madals Comparizan: Mulliple Obslacle Avoidance

© View: Multipl2 Ohstacle Avoidance 3D View: Multiple Obstacle Avoidance

:é 0.0- 5
: Obs a4 Obs2
-2.5 :

—— Orlginal IKNet -
3D View: Multipls Dbstacle Avoidance

1 I 1
-2 0 2

X Position
IENel Madels Comperisen: Mulliple ObsLacle Avoidance

30 View: Multiple Ohstacle Avoidance

2D Viewr: Multiple Obstacle Avoidance

Obs 1|

-
g,
1 1 1 1
X Position
—— Orlginal IKNet —— ImprovadiKNat —— FocusediKNet Obstach Targat
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Obstacle Avoidance

Obstacle avoidance step-by-step result for scenario 2. 6 - e g ————catumoms
4 - o 4 -
{24 T 1 2-

%%y  Performance degradation order 04 , e

@ Improved < Original < Focused 21 . . : . : :

-5.0 -2.5 0.0 -5.0 -2.5 0.0 2.5

* Pasttion  Position

Jm:‘::;, - Stop-by-Step Obstacle Avoidance Analysis - ImprovedIKNet
s
Target Error
Collision
Win Claarance
6 2D Overview Crltleal Area Closeup
4 -
4 ou ]
. oge
Adaptation capability ;
PR H 2 7 E 2 -
Improved shows best scalability - A i
0 7 - =
Target 0 -
-2 4
U 5 T T T
Step-by-Step Obstacle Avoidance Analysis - FocusedIKNet
-4 -2 0
X Pozition
6 — 2D overview Critleal Area Closeup e
2.26, 1.63, -11.65, 10.00

[-3.07, -0.38]
.| [-4.17, -0.37)
4 w1 5 - T
Mo

Safety maintenance {2
All models avoid collisions "ol | =% g

08630
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Obstacle Avoidance

Obstacle avoidance step-by-step result for scenario 3.
2.5 - o -
s EP{L 4
£ 0.0 - : £y -

o & : e

e _ o —2|5 = IS_e\M\
Critical performance test el o B ey

Maximum obstacle density 5 2 A e ] Y 4

2.5

Winner o 5
£ 0.0 {27 5 °”“”*{_‘
b o Cirarnre: 0.9713] 1

Improved IKNet maintains efficiency :

-2.5 ' 1

Step-by-Step Obstacle Avoidance Analysis - Focused/KNet

D Overview Ctitlcal Area Closeup o : 2
2 -
2.5 - = ovediKlet
0+ m\::m::ln'/ 13, -3.851
§ 007 | /! e
Challenge A e @ al -
. —2.5 =
Focused IKNet shows highest target errors e -4
-5.0 4 -
-2 (I) é ZII- —2I.5 OIO 2I5

FacusediKN=t

ssssss
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Obstacle Avoidance

Overall performance raking.

I Performance Rankings

* Original IKNet: Moderate performance (balanced metrics)
* Imporved IKNet: Best overall (lowest target error + reasonable
clearance)

* Focused IKNet: Safety-focused (highest clearance, highest error)
I Significance

* Target Error Differences: p < 0.01 between all models
* Clearance Differences: p < 0.05 for Improved vs. others

* Consistency: Low standard deviations confirm reliability

I Key Performance Indicators

* Efficiency Leader: Improved IKNet (13% better than Original)

* Safety Leader: Focused IKNet (65% higher clearance than Improved)

* Balance Champion: Improved IKNet (optimal safety-accuracy trade-off)

[ Results ]

Step-by-Step Performance Metrics

3.7536 Min Clearance

Target Error
3.5
3.2966

3.01 2.8651

2.5

2.0+

Value

1.5604
1.5

0.9932
1.0

0.5402
0.5

0.0

Focusex dIKNet Original IKNet ImprovedIKNet

Fig 21. Step by step obstacle avoidance summary
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Discussion

Talk more about what found in the research.

I Key Findings

* Balanced Attribution — Better Performance: Improved IKNet's success
* Feature Specialization: Each model's unique approach

* XAl-Safety Correlation: Attribution patterns predict performance

I Architectural Insights

* Residual Connections: Enable balanced feature utilization
* Position-Orientation Decoupling: Creates specialization

* Training Impact: Architecture affects decision patterns

I Practical Implications

* Model Selection: Based on application requirements
* Safety Considerations: Explainability enables better deployment

* Real-world Applications: Energy efficiency and task completion

5@
| Ngd

Discussion

Discussion Summary

Key Findings

Balanced Attribution
— Better Performance
Improved IKNet

Feature Specialization
XAl-Safety Correlation

Architectural Insights

% Residual Connections
Position-Orientation

Decoupling

> Better Performance

Betterenforr [@
IKNet

Practical Implications

&9 Model Selection

e Safety

Considderations

Real-world

Fig 22. Discussion
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Conclusion

Make the ending of the research.

I Research Summary

* Complete performance comparison table
* Feature importance rankings

* Obstacle avoidance metrics
I Main Contributions

* XAl framework for neural inverse kinematics
* Lightweight architectures with improved interpretability

* Safety-explainability correlation demonstrated

I Future Work

* Dynamic Obstacles: Real-time environment changes
* Multi-Robot Systems: Collaborative manipulation
* Hardware Validation: Real robot experiments

* Advanced XAl: More sophisticated explanation methods

5@
| Ngd

XAl Analysis Summary

Conclusions

Model

Top Features (SHAP)

Top Features (Custom)

Obstacle Clearance

Target Error

Collisions

Focuse diKNet

qz, qw. y

qy. z. qx

1.5604

3.7536

No

ImprovedIKNet

qz. qw. qy

qy. qw. qz

0.5402

2.8651

No

Original IKNet

qz, qw, gx

Z,qy, x

0.9932

3.2966

No

Fig 23. Summary
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